Ben Glocker

Deep Learning in Medical Imaging - Successes and Challenges

Machines capable of analysing and interpreting medical scans with super-human performance are within reach. Deep learning, in particular, has emerged as a promising tool in our work on automatically detecting brain damage. But getting from the lab into clinical practice comes with great challenges. How do we know when the machine gets it wrong? Can we predict failure, and can we make the machine robust to changes in the clinical data? We will discuss some of our most recent work that aims to address these critical issues and demonstrate our latest results on deep learning for analysing medical scans.

Ben Glocker is Senior Lecturer in Medical Image Computing at the Department of Computing at Imperial College London, and one of three academics leading the Biomedical Image Analysis Group. He also leads the HeartFlow-Imperial Research Team and is scientific advisor for London-based start-up Kheiron Medical Technologies. His research is at the intersection of medical image analysis and artificial intelligence aiming to build computational tools for improving diagnosis, therapy and intervention. He has received several awards including a Philips Impact Award and the Francois Erbsmann Prize. He is a member of the Young Scientists Community of the World Economic Forum. His ERC Starting Grant MIRA is devoted to developing the next generation machine intelligence for medical image representation and analysis.

Buttontwitter Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more