Avanti Shrikumar

Not Just a Black Box: Interpretable Deep Learning for Genomics

Deep learning models give state-of-the-art results on diverse problems, but their lack of interpretability is a major problem. Consider a model trained to predict which DNA mutations cause disease: if the model performs well, it has likely identified patterns that biologists would like to understand - but this is difficult if the model is a black box. In this talk, we present novel algorithms that address significant limitations of previous approaches to interpretability. Our algorithms discover far superior patterns and can work with any deep learning architecture, demonstrating the potential of interpretable deep learning in genomics and beyond.

Avanti Shrikumar is a Ph.D student in the Department of Computer Science at Stanford, advised by Professor Anshul Kundaje. Her research is on algorithms to make deep learning models more interpretable, with a focus on applications in regulatory genomics. Avanti has a Bachelor's in Computer Science with Molecular Biology from MIT and was a software engineer for the Healthcare team of Palantir Technologies before starting her PhD. She is a recipient of the HHMI International Student Research Fellowship, the Stanford Bio-X Fellowship, and the Microsoft Women’s Fellowship.

Buttontwitter Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more